Correlation between structural heterogeneity and plastic deformation for phase separating FeCu metallic glasses

نویسندگان

  • Chuan-Xiao Peng
  • Kai-Kai Song
  • Li Wang
  • Daniel Şopu
  • Simon Pauly
  • Jürgen Eckert
چکیده

Unlike crystalline metals, the plastic deformation of metallic glasses (MGs) involves a competition between disordering and structural relaxation ordering, which is not well understood, yet. Molecular dynamics (MD) simulations were performed to investigate the evolutions of strain localizations, short-range order (SRO) as well as the free volume in the glass during compressive deformation of Fe50Cu50 MGs with different degrees of phase separation. Our findings indicate that the free volume in the phase separating MGs decreases while the shear strain localizations increase with increasing degree of phase separation. Cu-centered clusters show higher potential energies and Voronoi volumes, and bear larger local shear strains. On the other hand, Fe-centered pentagon-rich clusters in Cu-rich regions seem to play an important role to resist the shear transformation. The dilatation or annihilation of Voronoi volumes is due to the competition between ordering via structural relaxation and shear stress-induced deformation. The present study could provide a better understanding of the relationship between the structural inhomogeneity and the deformation of MGs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of configurational disorder on plastic and dynamic deformation in Cu64Zr36 metallic glasses: A molecular dynamics analysis

The varying degrees of configurational disorder in metallic glasses are investigated quantitatively by molecular dynamics studies. A parameter, the quasi-nearest atom, is used to characterize the configurational disorder in metallic glasses. Our observations suggest configurational disorder play a role in structural heterogeneity, plasticity and dynamic relaxations in metallic glasses. The broa...

متن کامل

Deformation in Metallic Glasses Studied by Synchrotron X-Ray Diffraction

High mechanical strength is one of the superior properties of metallic glasses which render them promising as a structural material. However, understanding the process of mechanical deformation in strongly disordered matter, such as metallic glass, is exceedingly difficult because even an effort to describe the structure qualitatively is hampered by the absence of crystalline periodicity. In sp...

متن کامل

Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation

At room temperature, plastic flow of metallic glasses (MGs) is sharply localized in shear bands, which are a key feature of the plastic deformation in MGs. Despite their clear importance and decades of study, the conditions for formation of shear bands, their structural evolution and multiplication mechanism are still under debate. In this work, we investigate the local conditions at shear band...

متن کامل

Tensile plasticity in metallic glasses with pronounced β relaxations.

Metallic glasses are commonly brittle, as they generally fail catastrophically under uniaxial tension. Here we show pronounced macroscopic tensile plasticity achieved in a La-based metallic glass which possesses strong β relaxations and nanoscale heterogeneous structures. We demonstrate that the β relaxation is closely correlated with the activation of the structural units of plastic deformatio...

متن کامل

Large supercooled liquid region and phase separation in the Zr–Ti–Ni–Cu–Be bulk metallic glasses

Results of calorimetric, differential thermal analysis, and structural measurements are presented for a series of bulk metallic glass forming compositions in the Zr–Ti–Cu–Ni–Be alloy system. The calorimetric data for five alloys, prepared along the tie line between phase separating and nonphase separating compositions, show that the transition from phase separating to nonphase separating behavi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016